Elevated glucose impairs cAMP-mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells.
نویسندگان
چکیده
Hyperglycemia impairs endothelium-dependent vasodilation. In this study, we examined the effect of high glucose (HG) on vascular smooth muscle function. Rat small coronary arteries were freshly isolated or incubated for 24 h with normal glucose (NG; 5.5 mmol/l) or HG (23 mmol/l). In freshly isolated arteries, dilation to isoproterenol (Iso) was reduced by 3 mmol/l 4-aminopyridine (4-AP; 44 +/- 10% vs. 77 +/- 4%; P < 0.05) and further reduced by 4-AP + iberiotoxin (IbTX; 100 nmol/l; 17 +/- 2%). Dilation to forskolin was abolished by 4-AP (-3 +/- 17 vs. 73 +/- 9%). cAMP production was similar in NG and HG vessels. Dilations to Iso and forskolin were significantly reduced in HG arteries (Iso, 41 +/- 5% vs. 70 +/- 6%; forskolin, 40 +/- 4% vs. 75 +/- 4%) compared with NG arteries. A similar reduction was also observed to the dilation to papaverine. Endothelial denudation had no effect on Iso-induced dilation. In HG vessels, the reduced 4-AP-sensitive component of Iso-induced dilation was greater compared with the IbTX-sensitive component. Iso increased whole cell K+ current in NG cells but had little effect in HG cells. Similarly, 4-AP-, but not IbTX-sensitive, K+ currents were reduced in HG cells. These results suggest that HG impairs cAMP-mediated dilation primarily by reducing Kv channel function. We speculate that in addition to the endothelial dysfunction, altered smooth muscle function may also contribute to the reduced coronary vasodilation in diabetes.
منابع مشابه
Advanced Glycation End Products Impair Voltage-Gated K+ Channels-Mediated Coronary Vasodilation in Diabetic Rats
BACKGROUND We have previously reported that high glucose impairs coronary vasodilation by reducing voltage-gated K+ (Kv) channel activity. However, the underlying mechanisms remain unknown. Advanced glycation end products (AGEs) are potent factors that contribute to the development of diabetic vasculopathy. The aim of this study was to investigate the role of AGEs in high glucose-induced impair...
متن کاملNitration and functional loss of voltage-gated K+ channels in rat coronary microvessels exposed to high glucose.
Coronary microvessels generate reactive oxygen species in response to high glucose (HG), resulting in vasodilator defects involving an impaired function of vascular K(+) channels. Inhibition of voltage-gated K(+) (K(v)) channels by peroxynitrite (ONOO(-)), formed by the interaction of superoxide and nitric oxide, may contribute to impaired dilation. The present study investigated whether HG ind...
متن کاملSteady-State Modulation of Voltage-Gated K+ Channels in Rat Arterial Smooth Muscle by Cyclic AMP-Dependent Protein Kinase and Protein Phosphatase 2B
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel ac...
متن کاملContribution of KV1.5 Channel to Hydrogen Peroxide-Induced Human Arteriolar Dilation and Its Modulation by Coronary Artery Disease.
RATIONALE Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating large-conductance Ca2+-activated K+ channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) when compared with those with CAD remain unknown. OBJECTIVE...
متن کاملRedox modulation of vascular tone: focus of potassium channel mechanisms of dilation.
Opening of potassium channels on vascular smooth muscle cells with resultant hyperpolarization plays a central role in several mechanisms of vasodilation. For example, in the arteriolar circulation where tissue perfusion is regulated, there is an endothelial derived hyperpolarizing factor that opens vascular smooth muscle calcium-activated potassium channels, eliciting dilation. Metabolic vasod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 285 3 شماره
صفحات -
تاریخ انتشار 2003